نتایجی در خصوص احاطه گری رنگین کمانی در گراف ها
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شاهرود - دانشکده ریاضی
- نویسنده محمد حسینی
- استاد راهنما نادر جعفری راد
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1392
چکیده
برای گراف دلخواه g ، تابع یک تابع 2- احاطه گری رنگین کمان ( یا به اختصار 2rdf ) برای گراف g نامیده می شود، هرگاه برای هر رأس به طوری که ، داشته باشیم . وزن یک تابع 2- احاطه گری رنگین کمانی ، با نمادگذاری ، به صورت ذیل تعریف شده است . کمترین وزن یک 2rdf گراف g از میان همه ی چنین توابعی، عدد 2- احاطه گری رنگین کمانی گراف g نامیده شده و با نشان داده می شود. در فصل نخست این پایانامه، تعاریف و قضیه های موردنیاز در نظریه ی گراف ها را بیان می کنیم . در فصل 2، مقادیر دقیقی برای عدد 2- احاطه گری رنگین کمانی مسیرها ، دورها و گراف های خورشیدی ارایه می دهیم. همچنین، تعدادی کران برای عدد 2- احاطه گری رنگین کمانی در گراف های پترسن توسعه یافته ارایه می کنیم. در فصل 3، مفهوم بحرانی برای 2- احاطه گری رنگین کمانی در گراف ها را مطالعه می کنیم و یک طبقه بندی برای گراف های 2- احاطه گری رنگین کمانی رأسی (یالی) بحرانی و گراف های 2- احاطه گری رنگین کمانی رأسی (یالی ) ابربحرانی به دست می آوریم . در آخر ، در فصل 4، چندین کران پایین و در دسترس ( دقیق ) برای یک گراف دلخواه ارایه می کنیم. علاوه بر این، ارتباط بین 2- احاطه گری رنگین کمانی با نوع دیگری از احاطه گری در گراف ها را مطالعه می کنیم.
منابع مشابه
نتایجی برای عدد احاطه گر ماکسیمال ۲-رنگین کمانی در گراف ها
تابع یک تابع احاطه گر 2-رنگین کمانی برای گراف نامیده میشود هرگاه برای هر راس با شرط داشته باشیم . وزن یک 2rdf برابر است با . عدد احاطه گر 2-رنگین کمانی گراف را که با نماد نمایش میدهیم کمترین وزن یک 2rdf در گراف است. تابع احاطهگر ماکسیمال 2-رنگین کمانی (m2rdf) برای گراف یک تابع احاطهگر 2-رنگین کمانی میباشد بهطوری که مجموعهی یک مجموعهی احاطهگر برای گراف نباشد. وزن یک m2rdf ...
متن کاملبررسی عدد احاطه ای رنگین کمانی در گراف ها
مجموعه های احاطه گر موضوعی پرکاربرد و گسترده در نظریه ی گراف است که به صورت های گوناگونی تعمیم یافته است و امروزه در سطح وسیعی در دست مطالعه و بررسی است. یکی از انواع این تعمیم ها توابع احاطه گر رنگین کمانی است. تابع $f:v(g) ightarrow p({1, 2})$ را یک تابع احاطه گر 2-رنگین کمانی روی $g$ گویند هرگاه به ازای هر راس $vin v(g)$ با ویژگی $f(v)=emptyset$ تساوی $igcup_{uin n(...
عدد همبندی رنگین کمانی گراف ها
مفهوم عدد همبندی رنگین کمانی یکی از مفاهیم اساسی در نظریه ی گراف است که به علت کاربردهای زیاد آن در انتقال اطلاعات مورد توجه قرار گرفته است. یک رنگ آمیزی همبند رنگین کمانی از یک گراف g، یک رنگ آمیزی یالی نه لزوما معتبر از g است، به طوری که هر جفت از رئوس g توسط حداقل یک مسیر که یال های آن رنگ های متمایز از هم دارند به هم متصل اند و عدد همبندی رنگین کمانی g، کمترین تعداد رنگ مورد نیاز برای چنین...
بررسی رنگ آمیزی رنگین کمانی گراف ها
در این رساله رنگ آمیزی رنگین کمانی گرافها را مورد مطالعه قرار می دهیم. یک رنگ آمیزی رنگین کمانی از گراف g عبارت از تخصیص رنگ ها به راس های گراف g است به طوری که در همسایگی بسته ی هر راس g رنگها متمایز از هم باشند. به طور معادل یک رنگ آمیزی رنگین کمانی از گراف g یک رنگ آمیزی مجذور گراف g است و برعکس . با این رهیافت رنگ آمیزی رنگین کمانی تورها واستوانه ها و چنبره ها را مورد بررسی قرار می دهیم...
15 صفحه اول?-احاطه گری در گراف ها
فرض کنید g گراقی از مرتبه n و فاقد رأس تنها باشد. زیر مجموعه s از رئوس گراف g را یک مجموعه ?-احاطه گر نامیم هرگاه برای هر رأس خارج از مجموعه s، داشته باشیم |n(v) ? s|?? |n(v)|.حال اگراین مسأله را برای تمام رئوس گرافل تعمیم دهیم مسأله جدیدی به نام ?-احاطه گری کلی بوجود می آید.همچنین در فصل های بعد این پایان نامه تأثیر حذف یک رأس و افزایش و کاهش یک یال را بر عدد ?-احاطه گری بررسی می نماییم و مفهو...
15 صفحه اولاحاطه گری دلپذیر در گراف ها
زیر مجموعه¬ d از رئوس گراف g را یک مجموعه احاطه گر دلپذیر نامیم، هرگاه d دارای همسایه¬های یکسان در d باشند. کوچکترین اندازه یک مجموعه احاطه گر دلپذیر در گراف g را یک عدد احاطه گری دلپذیر g نامیده و آن را با fd(g) نشان می دهیم. یک مجموعه احاطه گر دلپذیر از اندازه fd(g) را به اختصار با fd(g)-مجموعه نشان می دهیم. در فصل اول این پایان نامه مفاهیم و مقدمات نظریه گراف که در فصل های بعد به آنها نیازمن...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شاهرود - دانشکده ریاضی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023